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3. METACYCLIC GROUPS 
 

§ 3.1. Polycyclic Groups 
 The class of polycyclic groups is C. So a group is 

polycyclic if and only if, for some n, there is a subnormal 

series 

1 = G0 < G1 < … < Gn = G 

Where each Gi+1/Gi is cyclic. 

 

 Clearly polycyclic groups are soluble. Does the 

converse hold? Clearly not, otherwise it would be a bit 

silly to have two names for the same class of groups. 

 

Theorem 1: Subgroups and quotient groups of polycyclic 

groups are polycyclic. Moreover, if H and G/H are 

polycyclic then so is G. 
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Proof: This follows from Theorem 2 of Chapter 1. ☺ 

 

Theorem 2: All finite soluble groups are polycyclic. 

Proof: Suppose G is finite and soluble. Then there is a 

subnormal series from 1 to G where the quotients are 

finite and abelian. Since finite abelian groups are direct 

sums of finite cyclic groups they are polycyclic and so 

they belong to (C) = C. ☺ 

 

 In fact all finitely generated soluble groups are 

polycyclic. To find our soluble group that’s not polycyclic 

we must look among soluble groups that are not finitely 

generated. 

 

Example 1: C2
  C2

  … is soluble but not polycyclic. 

Remember that a subnormal series must be finite. 

 

§ 3.2. Metacyclic Groups 
 The classes of soluble and polycyclic groups are 

very large, so large that we could never classify their 

groups. Here we’ll focus on a class of polycyclic groups, 

C2, that is just a bit wider than the class D of cyclic and 

dihedral groups. So we have: 

D  C2  C  S, that is 

cyclic/dihedral → metacyclic → polycyclic → soluble. 

 

 The class of metacyclic groups is defined to be C2. 



 43 

Thus a group G is metacyclic if and only if it has a normal 

subgroup H such that both H and G/H are cyclic. 

 

Example 2: The group A4 is polycyclic but not 

metacyclic. 

The subnormal series 1 < (12)(34) < V4 < A4 has cyclic 

quotients C2, C2 and C3 so A4 is polycyclic. 

 

If it was metacyclic 

it would have to have a 

subnormal series: 

1 < H < A4 

where H and A4/H are 

cyclic. 

 

Case I: H  C6: Then H must contain an element of order 

6 which must have cycle structure ()() … and this 

would require at least 5 symbols. 

 

Case II: H  C4: Then H must contain an element of order 

4 which must have cycle structure (). But such a 

permutation is odd. 

 

Case III: H  C3: Then G/H must be isomorphic to C4 

and be generated by an element of order 4. Then A4 must 

have an element whose order is divisible by 4, which is 

not the case. 

 



 44 

Case IV: H  C2: Then G/H must be isomorphic to C6 

and be generated by an element of order 6. Then A4 must 

have an element whose order is divisible by 6, which is 

not the case. 

 

§ 3.3. The Structure of Metacyclic Groups 
Theorem 2: Metacyclic groups have the form: 

M(m, n, h, r) = A, B | Am, Bn = Ah, B−1AB = Ar 

for some integers m, n, h and r. 

Proof: Suppose G is metacyclic. Then there exists a 

cyclic normal subgroup H such that G/H is cyclic. 

If H = A and G/H is generated by the coset containing 

B, then G is generated by A and B. 

Since B−1AB  H, B−1AB is a power of A. Finally 

some power of B will be in H. So a metacyclic group has 

the form: 

A, B | Am, Bn = Ah, B−1AB] = Ar. ☺ 

 

Examples 3: Dihedral groups are metacyclic. 

Q8 = A, B | A4, B2 = A2, [A, B] = A2 is the quaternion 

group. It, and D8, are the two non-abelian groups of 

order 8 and both are metacyclic. 

 

Consider the metacyclic group 

M(m, n, h, r) = A, B | Am, Bn = Ah, B−1AB = Ar 

 

Since B−1AB = Ar  we have AB = BAr. Every time 

a B moves left across an A it’s raised to the power r. 
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Hence AuB = BAur and so AuBv = BvAur
v
. 

In this way we can express any word in A, B in 

the form BsAt for some integers s, t.  Moreover, because 

of the power relator B
m

 = Ah we can reduce s modulo n 

by replacing blocks of n B’s by blocks of h A’s. 

 

And finally we can reduce the power of A modulo 

m because of the first power relator.  Every element of G 

can be written as BsAt where 0  s < n and 0  t < m. 

 It would be possible to write the elements with the 

A’s coming before the B’s but we’d need to convert the 

relation B−1AB = Ar into B−(n−1)ABn−1 = Ar
n−1

 from which 

we would get BB−nABnB−1 = BAB−1 = Ar
n−1

. Then, we 

could write BA = Ar
n−1

B. However this is messier. 

 

 There are at most  mn  distinct elements of the 

form BsAt and so |G|  mn. But in many cases the 

presentation will collapse, giving a smaller group, or 

even the trivial group. 

 

Example 4: Let G = A, B | A60, B3 = A4, [A, B] = A6. 

Then B−1AB = A7 and so B−3AB3 = A73
 = A343 = A43. 

But B−3AB3 = A−4AA4 = A and so A43 = A. 

Hence A42 = 1. 

 

But the greatest common denominator of 42 and 60 is 6. 

This means that for some integers h, k 42h + 60k = 6. 



 46 

(We needn’t bother working out what these integers are.) 

It follows that A6 = A42hA60k = 1. 

 So we can simplify the presentation to 

A, B | A6, B3 = A4, [A, B] = 1. 

The group is abelian and has order at most 18. and can 

be written additively as [A, B|6A = 4A − 3B = 0] with 

matrix 






6   0

4 −3
 . Reducing this by elementary integer row 

and column operations we get: 







2   3

4 −3
  → 







2   3

0 −9
  → 







2  3

0  9
  → 







2  1

0  9
  → 







1  2

9  0
  

                                                      → 






1    0

9 −18
  → 







1   0

0 18
 . 

Hence G is none other than the cyclic group of order 18. 

(In fact AB has order 18 and so is a generator.) 

 

§ 3.4. Enumerating Metacyclic Groups 
Theorem 3: The abelian metacyclic groups of order N are 

those of the form Cm  Cn where mn = N. 

Proof: Let G be an abelian metacyclic group of order N. 

Then G has the form: 

M(m, n, h, 1) = A, B | Am, Bn = Ah, BA = AB 

 

Theorem 4: The non-abelian metacyclic groups of order 

N have the form: 

M(m, n, h, r) = A, B | Am, Bn = Ah, B−1AB = Ar 

where: 
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(1) mn = N; 

(2) 2 < m < N; 

(3) h > 1 and h divides m; 

(4) r is coprime to m; 

(5) m divides h(r − 1); 

(6) m divides rn − 1. 

Proof: 

Suppose that G = A, B | Am, Bn = Ah, B−1AB = Ar is 

non-abelian of order N. 

(1) We have shown that N = mn. 

 

(2) If m = 1 then G = B and so is cyclic. 

If m = 2 then r = 1 and so G is abelian. 

If m = N then G = A and so is cyclic. 

Hence 1 < m < N. 

 

(3) If h = 1 then G = B and so is cyclic. Hence h > 1. 

 

(4) B−1AB = Ar. Let d = GCD(r, m) and suppose 

that d > 1. Let s = r/d and t = m/d. 

Then B−1AtB = Art = Adst = Ams = 1. 

Hence At = 1, yet t < m, a contradiction. Hence d = 1 and 

so r, m are coprime. 

 

(5) B−1AB = Ar so B−1AhB = Arh. 

Since Ah = Bn, Arh = Ah and so Ah(r−1) = 1. 

Hence m divides h(r − 1). 
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(6) B−1AB = Ar so B−nABn = Arn
. 

Since Bn = Ah, Arn
 = A and so m divides rn − 1. 

I omit the proof of the fact that if all these conditions 

hold then the group so presented has order N. ☺ 

 

To find all the non-abelian metacyclic groups of 

order N: 

(1) Choose m dividing N with 2 < m < N. 

(2) Let n = N/m. 

(3) Choose h > 1, dividing m. 

(4) Choose r > 1 such that: 

(a) r is coprime to m; 

(b) m divides h(r − 1); 

(c) m divides rn − 1. 

Then M(m, n, h, r) is a non-abelian metacyclic group of 

order N. 

Keep in mind that different presentations of 

metacyclic groups can give the same group. For example, 

r can be replaced by any integer that is coprime to m since 

A can be replaced by At for any t that’s coprime to m. 

Also, sometimes the relation Bn = Ah can be replaced by 

one where Ah = 1 by making changes to the generators. 

 

Example 4: Find all the non-abelian metacyclic groups 

of order 8. 

Solution: N = 8. The possibilities are found in the 

following table: 
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m n h r G 

4 2 2 3 Q8 

4 2 4 3 D8 

 

These are the only non-abelian metacyclic groups of 

order 8. In fact they are the only non-abelian groups of 

order 8. 

 

Example 5: Find all the non-abelian metacyclic groups 

of order 20. 

Solution: N = 20. The possibilities are found in the 

following table: 

m n h r G 

4 5 2 none  

4 5 4 none  

5 4 5 2 G1 

5 4 5 3 G2 

5 4 5 4 G3 

10 2 2 none  

10 2 5 9 G4 

10 2 10 9 G5 

 

G1  A, B | A5, B4, B−1AB = A2 

G2  A, B | A5, B4, B−1AB = A3 

G3  A, B | A5, B4, B−1AB = A−1 

G4  A, B | A10, B2 = A5, B−1AB = A−1 

G5  A, B | A10, B2, B−1AB = A−1  D20. 
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Now G1  G2 [let C = A2] and G3  G4 [let C = A2]. 

So in fact there are only 3 non-abelian metacyclic groups 

of order 20. In fact these are the only non-abelian groups 

of order 20. 

 

Theorem 5: Let G = A, B | Am, Bn = Ah, B−1AB = Ar be 

a metacyclic group. Let d = GCD(m, r − 1). 

Then Z(G) = Z(G) = Am/d, Bk where k is the order of r 

in ℤm
# and G = Ar−1. 

Proof: 

Suppose AiBj  Z(G). 

Then A−1(AiBj)A = AiBj and so A−1BjA = Bj, 

Whence Bj  Z(G). 

Similarly Ai  Z(G). 

Now B−1AB = Ar so B−1AiB = Ari = Ai 

and so Ai(r−1) = 1. 

Hence m | i(r − 1). 

Let m = du and r − 1 = dv where u, v are coprime. 

Then du | dvi and so u | vi. Since u, v are coprime, u | i and 

so Ai  Au = Am/k. 

Conversely Am/k  Z(G). 

Also B−jABj = Ar
j
.  B−jA−1Bj = A−r

j
 and so A−1Bj = 

BjA−r
j
. Thus A−1BjA = BjA1−r

j
 = Bj, so A1− r

j
 = 1. 

So m | rj −1 and so if k is the order of r in ℤm
# then k | j. 

Hence Bj  Bk. Conversely Bk  Z(G). 

Hence Z(G) = Am/d, Bk. 
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[A, B] = Ar so G contains Ar. 

Let H = Ar. Then H  G. 

In G/H, [AH, BH] = [A, B]H = H so G/H is abelian and 

so G  H. Hence G = Ar. ☺ 
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EXERCISES FOR CHAPTER 3 
 

Exercise 1: For each of the following statements 

determine whether it is true or false. 

(1) All polycyclic groups are soluble. 

(2) All soluble groups are polycyclic. 

(3) Metacyclic groups all have the form: 

A, B | Am, Bn, [A, B] = Ar 

(4) The order of the group A, B | Am, Bn, [A, B] = Ar 

can be less than mn. 

(5) A5 is the smallest non-metacyclic group. 

 

Exercise 2: Find all the metacyclic groups of order 30. 

 

Exercise 3: If G = A, B | A26, B3, B−1AB = A3 find the 

order of BA. 

 

Exercise 4: Let G = A, B | A16, B4 = A4, B−1AB = A13. 

Find Z(G) and G. 

 

SOLUTIONS FOR CHAPTER 3 
Exercise 1: 

(1) TRUE 

(2) FALSE: There are infinite soluble groups that aren’t 

polycyclic. 

(3) FALSE: Q8 the quaternion group: 

A, B | A4, B2 = A2, [A, B] = A2 is metacyclic but doesn’t 

have a presentation of this form. 
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(4) FALSE: Let G = A, B | A3, B2, [A, B] = A2. 

Then B−1AB = A3 = 1 and so A = 1. This group is therefore 

just C2. 

(5) FALSE: C2  C2  C2 is the smallest non-metacyclic 

group. 

 

Exercise 2: 

We begin with the abelian metacyclic groups of order 30. 

Every finite abelian group is a direct product of cyclic 

groups of prime-power order. So the only abelian group 

of order 30 is: C2  C3  C5 which is C30. 

So C30 is the only abelian metacyclic group of order 30. 

 

 Now we consider the non-abelian metacyclic 

groups of order 30. 

 

 

 

 

 

 

 

 

 

 

So the metacyclic groups of order 30 are: 

C30, D30, D6  C5 and D10  C3. 

 

Exercise 3: Since [A, B] = A2, BA = A3B. 

m n h r G 

2 15 2 none  

3 10 3 2 D6  C5 

5 6 5 4 D10  C3 

15 2 5 4 D10  C3 

15 2 15 4 D6  C5 

15 2 15 11 D10  C3 

15 2 15 14 D30 
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Hence (BA)2 = BABA = B2A4 and 

(BA)3 = BAB2A4 = B3A9A4 = B3A13 = A13. 

Hence (BA)6 = A26  = 1, so BA has order 6. 

AB always has the same order as BA and so it too has 

order 6. 

 

Exercise 4: m = 16, n = 4, h = 4, r = 13, d = 4, k = 4 

So Z(G) = A16/4, B4 = A4, B4 = A4 and A12 = A4 

G = B12 = A12 = A4. 

 


