3. METACYCLIC GROUPS

8§ 3.1. Polycyclic Groups
The class of polycyclic groups is ¢°. So a group is
polycyclic if and only if, for some n, there is a subnormal
series
1=Gy<G1<...<Gp=G
Where each Gi.1/G;j is cyclic.
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Clearly polycyclic groups are soluble. Does the
converse hold? Clearly not, otherwise it would be a bit
silly to have two names for the same class of groups.

Theorem 1: Subgroups and quotient groups of polycyclic
groups are polycyclic. Moreover, if H and G/H are
polycyclic then so is G.
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Proof: This follows from Theorem 2 of Chapter 1. %©

Theorem 2: All finite soluble groups are polycyclic.
Proof: Suppose G is finite and soluble. Then there is a
subnormal series from 1 to G where the quotients are
finite and abelian. Since finite abelian groups are direct
sums of finite cyclic groups they are polycyclic and so
they belong to (¢?)* = ¢*. %©

In fact all finitely generated soluble groups are
polycyclic. To find our soluble group that’s not polycyclic
we must look among soluble groups that are not finitely
generated.

Example 1: C, x C, x ... is soluble but not polycyclic.
Remember that a subnormal series must be finite.

8§ 3.2. Metacyclic Groups

The classes of soluble and polycyclic groups are
very large, so large that we could never classify their
groups. Here we’ll focus on a class of polycyclic groups,
@2, that is just a bit wider than the class 9 of cyclic and
dihedral groups. So we have:

D@ S, thatis

cyclic/dihedral — metacyclic — polycyclic — soluble.

The class of metacyclic groups is defined to be .

42



Thus a group G is metacyclic if and only if it has a normal
subgroup H such that both H and G/H are cyclic.

Example 2: The group A, is polycyclic but not
metacyclic.

The subnormal series 1 < ((12)(34)) < V4 < A4 has cyclic
quotients C,, C, and C3 so A4 is polycyclic.

_— If it was metacyclic

#8 it would have to have a

& subnormal series:
1<H<A

where H and A4/H are

cyclic.

Case I: H= Cs: Then H must contain an element of order
6 which must have cycle structure (xxx)(xx) ... and this
would require at least 5 symbols.

Case Il: H= C4: Then H must contain an element of order
4 which must have cycle structure (xxxx). But such a
permutation is odd.

Case Ill: H = Cs: Then G/H must be isomorphic to C,
and be generated by an element of order 4. Then A, must
have an element whose order is divisible by 4, which is
not the case.
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Case IV: H = C,: Then G/H must be isomorphic to Cs
and be generated by an element of order 6. Then A, must
have an element whose order is divisible by 6, which is
not the case.

§ 3.3. The Structure of Metacyclic Groups
Theorem 2: Metacyclic groups have the form:

M(m, n, h,r) =(A, B|A™, B" = A" BAB = A"
for some integers m, n, handr.
Proof: Suppose G is metacyclic. Then there exists a
cyclic normal subgroup H such that G/H is cyclic.
If H=(A) and G/H is generated by the coset containing
B, then G is generated by A and B.

Since BAB < H, BAB is a power of A. Finally
some power of B will be in H. So a metacyclic group has
the form:

(A, B|A™ B"= A" BAB] = A". %©

Examples 3: Dihedral groups are metacyclic.

Qs = (A, B| A% B?=A? [A, B] = A%) is the quaternion
group. It, and Dsg, are the two non-abelian groups of
order 8 and both are metacyclic.

Consider the metacyclic group
M(m, n, h, r) = (A, B| A™, B"= A" BAB = A"

Since BAB = A" we have AB = BA". Every time
a B moves left across an A it’s raised to the power r.
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Hence AUB = BA'" and so AYB" = BYAur",
In this way we can express any word in A, B in
the form BSA! for some integers s, t. Moreover, because

of the power relator B™ = A" we can reduce s modulo n
by replacing blocks of n B’s by blocks of h A’s.

And finally we can reduce the power of A modulo
m because of the first power relator. Every element of G

can be written as BSAtwhere0<s<nand0<t<m.

It would be possible to write the elements with the
A’s coming before the B’s but we’d need to convert the
relation B-2AB = A" into B-™YAB™ = A" from which
we would get BB"AB"B! = BAB™ = A Then, we
could write BA = Ar"'B. However this is messier.

There are at most mn distinct elements of the
form BSAland so |G| < mn. But in many cases the

presentation will collapse, giving a smaller group, or
even the trivial group.

Example 4: Let G = (A, B| A%, B3 = A% [A, B] = A).
Then B2AB = A” and so B3AB% = A7° = A3 = A®,
But B2AB% = A*AA*= Aand so A¥® = A,

Hence A% = 1.

But the greatest common denominator of 42 and 60 is 6.
This means that for some integers h, k 42h + 60k = 6.
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(We needn’t bother working out what these integers are.)
It follows that A® = A*2hAB0k = 1
So we can simplify the presentation to
(A,B| A5 B*=A%[A, B]=1).
The group is abelian and has order at most 18. and can
be written additively as [A, B|6A = 4A — 3B = 0] with

. (60 _ . .
matrix | , ,|. Reducing this by elementary integer row

4
and column operations we get:

4565 -6 ~0e) > oo

(1 Oj (1 0)
—l9-18) 018/

Hence G is none other than the cyclic group of order 18.
(In fact AB has order 18 and so is a generator.)

§ 3.4. Enumerating Metacyclic Groups
Theorem 3: The abelian metacyclic groups of order N are
those of the form Cy,, x C, where mn = N.

Proof: Let G be an abelian metacyclic group of order N.
Then G has the form:

M(m, n, h, 1) = (A, B| A", B" = A", BA = AB)

Theorem 4: The non-abelian metacyclic groups of order
N have the form:

M(m, n, h, r)=(A, B|A™ B" = A" BAB = A"
where:
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(1) mn=N;
(2)2<m<N;
(3) h>1 and h divides m;
(4) r is coprime to m;
(5) m divides h(r — 1);
(6) m divides r" — 1.
Proof:
Suppose that G = (A, B| A™ B"= A" B2AB = A" is
non-abelian of order N.
(1) We have shown that N = mn.

(2) If m =1then G =(B) and so is cyclic.
If m=2thenr=1andso G is abelian.

If m =N then G = (A) and so is cyclic.
Hence 1 <m < N.

(3) If h=1then G =(B) and so is cyclic. Hence h > 1.

(4) B*AB =A". Let d = GCD(r, m) and suppose
thatd > 1. Lets=r/d and t = m/d.

Then BIAB=A"T=A® =A™ =1,

Hence Al =1, yet t < m, a contradiction. Hence d = 1 and
SO r, mare coprime.

(5) BAB = A" so B1A'B = A™.

Since A"=B" A™ = AN and so ANC-D =1,
Hence m divides h(r — 1).
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(6) B1AB = A"so B"AB" = Ar".

Since B" = A", Ar'" = A and so m divides r" — 1.

| omit the proof of the fact that if all these conditions
hold then the group so presented has order N. % ©

To find all the non-abelian metacyclic groups of
order N:
(1) Choose m dividing N with 2 <m < N.
(2) Let n = N/m.
(3) Choose h > 1, dividing m.
(4) Choose r > 1 such that:

(a) r is coprime to m;

(b) m divides h(r — 1);

(c) mdivides r" - 1.
Then M(m, n, h, r) is a non-abelian metacyclic group of
order N.

Keep in mind that different presentations of
metacyclic groups can give the same group. For example,
r can be replaced by any integer that is coprime to m since

A can be replaced by A! for any t that’s coprime to m.
Also, sometimes the relation B" = A" can be replaced by
one where A" = 1 by making changes to the generators.

Example 4: Find all the non-abelian metacyclic groups
of order 8.

Solution: N = 8. The possibilities are found in the
following table:
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m n h r G
4 2 2 3 Qs
4 2 4 3 Ds

These are the only non-abelian metacyclic groups of
order 8. In fact they are the only non-abelian groups of
order 8.

Example 5: Find all the non-abelian metacyclic groups
of order 20.

Solution: N = 20. The possibilities are found in the
following table:

m n h r G
4 5 2 none
4 5 4 none
5 4 5 2 G,
5 4 5 3 G,
5 4 5 4 Gs
10 2 2 none
10 2 5 9 Gy
10 2 10 9 Gs

Gi= (A, B| A5 B BlAB = A%

G, = (A, B|AS, B B1AB = A%

Gs= (A, B| A5 B BlAB=A"

Gs= (A, B|AL B2= A5 BAB =AY
Gs= (A, B| A, B2, BLAB = A1) = Dy
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Now G; = G, [let C = A?J and Gs = G, [let C = A?].

So in fact there are only 3 non-abelian metacyclic groups
of order 20. In fact these are the only non-abelian groups
of order 20.

Theorem 5: Let G = (A, B|A™, B"= A", B-AB = A") be
a metacyclic group. Letd = GCD(m, r — 1).

Then Z(G) = Z(G) = (A™, B where k is the order of r
in Zm" and G’ = (A" 1),

Proof:

Suppose AlB! € Z(G).

Then A(A'B)A = A'Bl and so ABIA = B,

Whence B! € Z(G).

Similarly Al € Z(G).

Now B'AB = A" so BAB = A" = Al

and so A™D =1,

Hence m | i(r —1).

Let m =duand r — 1 =dv where u, v are coprime.

Then du | dvi and so u | vi. Since u, v are coprime, u | i and
s0 Al e (AU = (AMky,

Conversely A™% ¢ Z(G).

Also BJABI = AP, - BIABI = A" and so A'BI =
BIA-. Thus ABIA = BIAL-F = Bi so Al-I' =1,

So m| ¥ -1 and so if k is the order of r in Zy* then k | j.
Hence B! e (BX). Conversely B¥ e Z(G).

Hence Z(G) = (A™d, BY).
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[A, B] = A" so G’ contains A".

Let H=(A". ThenH <G,

In G/H, [AH, BH] = [A, B]JH = H so G/H is abelian and
so G’ < H. Hence G' = (A". %©
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EXERCISES FOR CHAPTER 3

Exercise 1: For each of the following statements
determine whether it is true or false.
(1) All polycyclic groups are soluble.
(2) All soluble groups are polycyclic.
(3) Metacyclic groups all have the form:
(A,B|A™ B" [A,B]=A"
(4) The order of the group (A, B | A", B", [A, B] = A"
can be less than mn.
(5) As is the smallest non-metacyclic group.

Exercise 2: Find all the metacyclic groups of order 30.

Exercise 3: If G = (A, B | A%, B3, BAB = A3) find the
order of BA.

Exercise 4: Let G = (A, B| A%, B* = A* B1AB = AB),
Find Z(G) and G'.

SOLUTIONS FOR CHAPTER 3
Exercise 1:
(1) TRUE
(2) FALSE: There are infinite soluble groups that aren’t
polycyclic.
(3) FALSE: Qs the quaternion group:
(A, B|A% B?= A2 [A, B] = A%) is metacyclic but doesn’t
have a presentation of this form.
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(4) FALSE: Let G = (A, B| A3, B?, [A, B] = A?).

Then B-AB = A®=1and so A = 1. This group is therefore
just Co.

(5) FALSE: C; x C; x C; is the smallest non-metacyclic
group.

Exercise 2:

We begin with the abelian metacyclic groups of order 30.
Every finite abelian group is a direct product of cyclic
groups of prime-power order. So the only abelian group
of order 30 is: C, x C3 x Cs which is Ca,.

So Cgy is the only abelian metacyclic group of order 30.

Now we consider the non-abelian metacyclic
groups of order 30.

m|n|h r G

2 |15|2 |none

3 11013 |2 De x Cs
5 6 5 4 D10 X C3
15 |2 5 4 D]_o X C3
1512 |15/4 Dg x Cs
1512 |15]11 Do x Cs
1512 |15]14 Dao

So the metacyclic groups of order 30 are:
Caz0, D3g, Dg x Cs and Dyg x Ca.

Exercise 3: Since [A, B] = A2, BA = A°B.
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Hence (BA)? = BABA = B2A* and

(BA)® = BAB?A* = B3A’A* = B3 AB = A3,

Hence (BA)® = A% =1, so BA has order 6.

AB always has the same order as BA and so it too has
order 6.

Exercise4: m=16,n=4,h=4,r=13,d=4,k=4

S0 Z(G) = (A4 B = (A% B% = (A% and (A2) = (A%)
G' = (B™) = (A%) = (AY),
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