

3. METACYCLIC GROUPS

§ 3.1. Polycyclic Groups

The class of **polycyclic groups** is \mathcal{C}° . So a group is polycyclic if and only if, for some n , there is a subnormal series

$$1 = G_0 < G_1 < \dots < G_n = G$$

Where each G_{i+1}/G_i is cyclic.

Clearly polycyclic groups are soluble. Does the converse hold? Clearly not, otherwise it would be a bit silly to have two names for the same class of groups.

Theorem 1: Subgroups and quotient groups of polycyclic groups are polycyclic. Moreover, if H and G/H are polycyclic then so is G .

Proof: This follows from Theorem 2 of Chapter 1.

Theorem 2: All finite soluble groups are polycyclic.

Proof: Suppose G is finite and soluble. Then there is a subnormal series from 1 to G where the quotients are finite and abelian. Since finite abelian groups are direct sums of finite cyclic groups they are polycyclic and so they belong to $(\mathcal{C}^\infty)^\infty = \mathcal{C}^\infty$.

In fact all finitely generated soluble groups are polycyclic. To find our soluble group that's not polycyclic we must look among soluble groups that are not finitely generated.

Example 1: $\mathbf{C}_2 \times \mathbf{C}_2 \times \dots$ is soluble but not polycyclic. Remember that a subnormal series must be finite.

§ 3.2. Metacyclic Groups

The classes of soluble and polycyclic groups are very large, so large that we could never classify their groups. Here we'll focus on a class of polycyclic groups, \mathcal{C}^2 , that is just a bit wider than the class \mathcal{D} of cyclic and dihedral groups. So we have:

$$\mathcal{D} \subseteq \mathcal{C}^2 \subseteq \mathcal{C}^\infty \subseteq \mathcal{S}, \text{ that is}$$

cyclic/dihedral \rightarrow metacyclic \rightarrow polycyclic \rightarrow soluble.

The class of **metacyclic groups** is defined to be \mathcal{C}^2 .

Thus a group G is metacyclic if and only if it has a normal subgroup H such that both H and G/H are cyclic.

Example 2: The group A_4 is polycyclic but not metacyclic.

The subnormal series $1 < \langle (12)(34) \rangle < V_4 < A_4$ has cyclic quotients C_2 , C_2 and C_3 so A_4 is polycyclic.

If it was metacyclic it would have to have a subnormal series:
 $1 < H < A_4$
where H and A_4/H are cyclic.

Case I: $H \cong C_6$: Then H must contain an element of order 6 which must have cycle structure $(\times \times \times)(\times \times) \dots$ and this would require at least 5 symbols.

Case II: $H \cong C_4$: Then H must contain an element of order 4 which must have cycle structure $(\times \times \times \times)$. But such a permutation is odd.

Case III: $H \cong C_3$: Then G/H must be isomorphic to C_4 and be generated by an element of order 4. Then A_4 must have an element whose order is divisible by 4, which is not the case.

Case IV: $H \cong C_2$: Then G/H must be isomorphic to C_6 and be generated by an element of order 6. Then A_4 must have an element whose order is divisible by 6, which is not the case.

§ 3.3. The Structure of Metacyclic Groups

Theorem 2: Metacyclic groups have the form:

$$M(m, n, h, r) = \langle A, B \mid A^m, B^n = A^h, B^{-1}AB = A^r \rangle$$

for some integers m, n, h and r .

Proof: Suppose G is metacyclic. Then there exists a cyclic normal subgroup H such that G/H is cyclic.

If $H = \langle A \rangle$ and G/H is generated by the coset containing B , then G is generated by A and B .

Since $B^{-1}AB \in H$, $B^{-1}AB$ is a power of A. Finally some power of B will be in H. So a metacyclic group has the form:

$\langle A, B \mid A^m, B^n = A^h, B^{-1}AB = A^r \rangle$.

Examples 3: Dihedral groups are metacyclic.

$\mathbf{Q}_8 = \langle A, B \mid A^4, B^2 = A^2, [A, B] = A^2 \rangle$ is the quaternion group. It, and \mathbf{D}_8 , are the two non-abelian groups of order 8 and both are metacyclic.

Consider the metacyclic group

$$M(m, n, h, r) = \langle A, B \mid A^m, B^n = A^h, B^{-1}AB = A^r \rangle$$

Since $B^{-1}AB = A^r$ we have $AB = BA^r$. Every time a B moves left across an A it's raised to the power r .

Hence $A^u B = B A^{ur}$ and so $A^u B^v = B^v A^{ur^v}$.

In this way we can express any word in A, B in the form $B^s A^t$ for some integers s, t . Moreover, because of the power relator $B^m = A^h$ we can reduce s modulo n by replacing blocks of n B 's by blocks of h A 's.

And finally we can reduce the power of A modulo m because of the first power relator. Every element of G can be written as $B^s A^t$ where $0 \leq s < n$ and $0 \leq t < m$.

It would be possible to write the elements with the A 's coming before the B 's but we'd need to convert the relation $B^{-1}AB = A^r$ into $B^{-(n-1)}AB^{n-1} = A^{r^{n-1}}$ from which we would get $BB^{-n}AB^nB^{-1} = BAB^{-1} = A^{r^{n-1}}$. Then, we could write $BA = A^{r^{n-1}}B$. However this is messier.

There are at most mn distinct elements of the form $B^s A^t$ and so $|G| \leq mn$. But in many cases the presentation will collapse, giving a smaller group, or even the trivial group.

Example 4: Let $G = \langle A, B \mid A^{60}, B^3 = A^4, [A, B] = A^6 \rangle$.

Then $B^{-1}AB = A^7$ and so $B^{-3}AB^3 = A^{7^3} = A^{343} = A^{43}$.

But $B^{-3}AB^3 = A^{-4}AA^4 = A$ and so $A^{43} = A$.

Hence $A^{42} = 1$.

But the greatest common denominator of 42 and 60 is 6. This means that for some integers h, k $42h + 60k = 6$.

(We needn't bother working out what these integers are.)
It follows that $A^6 = A^{42h}A^{60k} = 1$.

So we can simplify the presentation to

$$\langle A, B \mid A^6, B^3 = A^4, [A, B] = 1 \rangle.$$

The group is abelian and has order at most 18. and can be written additively as $[A, B | 6A = 4A - 3B = 0]$ with matrix $\begin{pmatrix} 6 & 0 \\ 4 & -3 \end{pmatrix}$. Reducing this by elementary integer row and column operations we get:

$$\begin{pmatrix} 2 & 3 \\ 4 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 3 \\ 0 & -9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 3 \\ 0 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 \\ 0 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 \\ 9 & 0 \end{pmatrix} \\ \rightarrow \begin{pmatrix} 1 & 0 \\ 9 & -18 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 18 \end{pmatrix}.$$

Hence G is none other than the cyclic group of order 18.
(In fact AB has order 18 and so is a generator.)

§ 3.4. Enumerating Metacyclic Groups

Theorem 3: The abelian metacyclic groups of order N are those of the form $C_m \times C_n$ where $mn = N$.

Proof: Let G be an abelian metacyclic group of order N . Then G has the form:

$$M(m, n, h, 1) = \langle A, B \mid A^m, B^n = A^h, BA = AB \rangle$$

Theorem 4: The non-abelian metacyclic groups of order N have the form:

$$M(m, n, h, r) = \langle A, B \mid A^m, B^n = A^h, B^{-1}AB = A^r \rangle$$

where:

- (1) $mn = N$;
- (2) $2 < m < N$;
- (3) $h > 1$ and h divides m ;
- (4) r is coprime to m ;
- (5) m divides $h(r - 1)$;
- (6) m divides $r^n - 1$.

Proof:

Suppose that $G = \langle A, B \mid A^m, B^n = A^h, B^{-1}AB = A^r \rangle$ is non-abelian of order N .

(1) We have shown that $N = mn$.

(2) If $m = 1$ then $G = \langle B \rangle$ and so is cyclic.

If $m = 2$ then $r = 1$ and so G is abelian.

If $m = N$ then $G = \langle A \rangle$ and so is cyclic.

Hence $1 < m < N$.

(3) If $h = 1$ then $G = \langle B \rangle$ and so is cyclic. Hence $h > 1$.

(4) $B^{-1}AB = A^r$. Let $d = \text{GCD}(r, m)$ and suppose that $d > 1$. Let $s = r/d$ and $t = m/d$.

Then $B^{-1}A^tB = A^{rt} = A^{dst} = A^{ms} = 1$.

Hence $A^t = 1$, yet $t < m$, a contradiction. Hence $d = 1$ and so r, m are coprime.

(5) $B^{-1}AB = A^r$ so $B^{-1}A^hB = A^{rh}$.

Since $A^h = B^n$, $A^{rh} = A^h$ and so $A^{h(r-1)} = 1$.

Hence m divides $h(r - 1)$.

(6) $B^{-1}AB = A^r$ so $B^{-n}AB^n = A^{r^n}$.

Since $B^n = A^h$, $A^{r^n} = A$ and so m divides $r^n - 1$.

I omit the proof of the fact that if all these conditions hold then the group so presented has order N.

To find all the non-abelian metacyclic groups of order N:

(1) Choose m dividing N with $2 < m < N$.

(2) Let $n = N/m$.

(3) Choose $h > 1$, dividing m .

(4) Choose $r > 1$ such that:

(a) r is coprime to m ;

(b) m divides $h(r - 1)$;

(c) m divides $r^n - 1$.

Then $M(m, n, h, r)$ is a non-abelian metacyclic group of order N.

Keep in mind that different presentations of metacyclic groups can give the same group. For example, r can be replaced by any integer that is coprime to m since A can be replaced by A^t for any t that's coprime to m . Also, sometimes the relation $B^n = A^h$ can be replaced by one where $A^h = 1$ by making changes to the generators.

Example 4: Find all the non-abelian metacyclic groups of order 8.

Solution: $N = 8$. The possibilities are found in the following table:

<i>m</i>	<i>n</i>	<i>h</i>	<i>r</i>	G
4	2	2	3	Q₈
4	2	4	3	D₈

These are the only non-abelian metacyclic groups of order 8. In fact they are the only non-abelian groups of order 8.

Example 5: Find all the non-abelian metacyclic groups of order 20.

Solution: N = 20. The possibilities are found in the following table:

<i>m</i>	<i>n</i>	<i>h</i>	<i>r</i>	G
4	5	2	none	
4	5	4	none	
5	4	5	2	G ₁
5	4	5	3	G ₂
5	4	5	4	G ₃
10	2	2	none	
10	2	5	9	G ₄
10	2	10	9	G ₅

$$G_1 \cong \langle A, B \mid A^5, B^4, B^{-1}AB = A^2 \rangle$$

$$G_2 \cong \langle A, B \mid A^5, B^4, B^{-1}AB = A^3 \rangle$$

$$G_3 \cong \langle A, B \mid A^5, B^4, B^{-1}AB = A^{-1} \rangle$$

$$G_4 \cong \langle A, B \mid A^{10}, B^2 = A^5, B^{-1}AB = A^{-1} \rangle$$

$$G_5 \cong \langle A, B \mid A^{10}, B^2, B^{-1}AB = A^{-1} \rangle \cong D_{20}.$$

Now $G_1 \cong G_2$ [let $C = A^2$] and $G_3 \cong G_4$ [let $C = A^2$].

So in fact there are only 3 non-abelian metacyclic groups of order 20. In fact these are the only non-abelian groups of order 20.

Theorem 5: Let $G = \langle A, B \mid A^m, B^n = A^h, B^{-1}AB = A^r \rangle$ be a metacyclic group. Let $d = \text{GCD}(m, r - 1)$.

Then $Z(G) = Z(G) = \langle A^{m/d}, B^k \rangle$ where k is the order of r in $\mathbb{Z}_m^\#$ and $G' = \langle A^{r-1} \rangle$.

Proof:

Suppose $A^i B^j \in Z(G)$.

Then $A^{-1}(A^i B^j)A = A^i B^j$ and so $A^{-1}B^jA = B^j$,

Whence $B^j \in Z(G)$.

Similarly $A^i \in Z(G)$.

Now $B^{-1}AB = A^r$ so $B^{-1}A^i B = A^{ri} = A^i$

and so $A^{i(r-1)} = 1$.

Hence $m \mid i(r - 1)$.

Let $m = du$ and $r - 1 = dv$ where u, v are coprime.

Then $du \mid dvi$ and so $u \mid vi$. Since u, v are coprime, $u \mid i$ and so $A^i \in \langle A^u \rangle = \langle A^{m/k} \rangle$.

Conversely $A^{m/k} \in Z(G)$.

Also $B^{-j}AB^j = A^{r^j}$. $\therefore B^{-j}A^{-1}B^j = A^{-r^j}$ and so $A^{-1}B^j = B^jA^{-r^j}$. Thus $A^{-1}B^jA = B^jA^{1-r^j} = B^j$, so $A^{1-r^j} = 1$.

So $m \mid r^j - 1$ and so if k is the order of r in $\mathbb{Z}_m^\#$ then $k \mid j$.

Hence $B^j \in \langle B^k \rangle$. Conversely $B^k \in Z(G)$.

Hence $Z(G) = \langle A^{m/d}, B^k \rangle$.

$[A, B] = A'$ so G' contains A' .

Let $H = \langle A' \rangle$. Then $H \leq G'$.

In G/H , $[AH, BH] = [A, B]H = H$ so G/H is abelian and so $G' \leq H$. Hence $G' = \langle A' \rangle$.

EXERCISES FOR CHAPTER 3

Exercise 1: For each of the following statements determine whether it is true or false.

- (1) All polycyclic groups are soluble.
- (2) All soluble groups are polycyclic.
- (3) Metacyclic groups all have the form:

$$\langle A, B \mid A^m, B^n, [A, B] = A^r \rangle$$

- (4) The order of the group $\langle A, B \mid A^m, B^n, [A, B] = A^r \rangle$ can be less than mn .
- (5) A_5 is the smallest non-metacyclic group.

Exercise 2: Find all the metacyclic groups of order 30.

Exercise 3: If $G = \langle A, B \mid A^{26}, B^3, B^{-1}AB = A^3 \rangle$ find the order of BA .

Exercise 4: Let $G = \langle A, B \mid A^{16}, B^4 = A^4, B^{-1}AB = A^{13} \rangle$. Find $Z(G)$ and G' .

SOLUTIONS FOR CHAPTER 3

Exercise 1:

- (1) TRUE
- (2) FALSE: There are infinite soluble groups that aren't polycyclic.
- (3) FALSE: Q_8 the quaternion group: $\langle A, B \mid A^4, B^2 = A^2, [A, B] = A^2 \rangle$ is metacyclic but doesn't have a presentation of this form.

(4) FALSE: Let $G = \langle A, B \mid A^3, B^2, [A, B] = A^2 \rangle$.

Then $B^{-1}AB = A^3 = 1$ and so $A = 1$. This group is therefore just C_2 .

(5) FALSE: $C_2 \times C_2 \times C_2$ is the smallest non-metacyclic group.

Exercise 2:

We begin with the abelian metacyclic groups of order 30. Every finite abelian group is a direct product of cyclic groups of prime-power order. So the only abelian group of order 30 is: $C_2 \times C_3 \times C_5$ which is C_{30} .
So C_{30} is the only abelian metacyclic group of order 30.

Now we consider the non-abelian metacyclic groups of order 30.

<i>m</i>	<i>n</i>	<i>h</i>	<i>r</i>	<i>G</i>
2	15	2	none	
3	10	3	2	$D_6 \times C_5$
5	6	5	4	$D_{10} \times C_3$
15	2	5	4	$D_{10} \times C_3$
15	2	15	4	$D_6 \times C_5$
15	2	15	11	$D_{10} \times C_3$
15	2	15	14	D_{30}

So the metacyclic groups of order 30 are:

C_{30} , D_{30} , $D_6 \times C_5$ and $D_{10} \times C_3$.

Exercise 3: Since $[A, B] = A^2$, $BA = A^3B$.

Hence $(BA)^2 = BABA = B^2A^4$ and
 $(BA)^3 = BAB^2A^4 = B^3A^9A^4 = B^3A^{13} = A^{13}$.

Hence $(BA)^6 = A^{26} = 1$, so BA has order 6.

AB always has the same order as BA and so it too has order 6.

Exercise 4: $m = 16, n = 4, h = 4, r = 13, d = 4, k = 4$
So $Z(G) = \langle A^{16/4}, B^4 \rangle = \langle A^4, B^4 \rangle = \langle A^4 \rangle$ and $\langle A^{12} \rangle = \langle A^4 \rangle$
 $G' = \langle B^{12} \rangle = \langle A^{12} \rangle = \langle A^4 \rangle$.